Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of CO simulations and the analysis of the CO budget for Europe

Identifieur interne : 000184 ( PascalFrancis/Corpus ); précédent : 000183; suivant : 000185

Evaluation of CO simulations and the analysis of the CO budget for Europe

Auteurs : G. Pfister ; G. Petron ; L. K. Emmons ; J. C. Gille ; D. P. Edwards ; J.-F. Lamarque ; J.-L. Attie ; C. Granier ; P. C. Novelli

Source :

RBID : Pascal:04-0595264

Descripteurs français

English descriptors

Abstract

CO is a well-suited indicator for the transport of pollutants in the troposphere on a regional and global scale. For the study presented here, simulations of CO concentrations from a global chemistry transport model (MOZART-2), with the CO being tagged according to the emission type and the source region, have been used to diagnose the contributions of different processes and regions to the CO burden over Europe. Model simulations have been performed with both a priori emissions and an optimized set of CO surface emissions derived from the inversion of CO retrievals of the Measurements of Pollution in the Troposphere (MOPITT) remote sensing instrument. The annual mean difference between the modeled and the observed CO at 850 hPa over Europe is -38 ± 13 ppb with the a priori set of emissions and -7 ± 7 ppb when the optimized emissions are employed in the model. The general difficulties arising from an intercomparison of remote sensing data with model simulations are discussed. Besides data from MOPITT, ground-based CO measurements have been employed in the evaluation of the model and its emissions. The comparisons show that the model represents the background conditions as well as large-scale transport relatively well. The budget analysis reveals the predominant impact of the European emissions on CO concentrations near the surface, and a strong impact of sources from Asia and North America on the CO burden in the free troposphere over Europe. On average, the largest contribution (67%) to the anthropogenic (fossil and biofuel sources, biomass burning) CO at the surface originates from regional anthropogenic sources, but further significant impact is evident from North America (14%) and Asia (15%). With increasing altitude, anthropogenic CO from Asia and North America gains in importance, reaching maximum contributions of 32% for North American CO at 500 hPa and 50% for Asian CO at 200 hPa. The impact of European emissions weakens with increasing altitude (8% at 500 hPa).

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 109
A06       @2 D19
A08 01  1  ENG  @1 Evaluation of CO simulations and the analysis of the CO budget for Europe
A11 01  1    @1 PFISTER (G.)
A11 02  1    @1 PETRON (G.)
A11 03  1    @1 EMMONS (L. K.)
A11 04  1    @1 GILLE (J. C.)
A11 05  1    @1 EDWARDS (D. P.)
A11 06  1    @1 LAMARQUE (J.-F.)
A11 07  1    @1 ATTIE (J.-L.)
A11 08  1    @1 GRANIER (C.)
A11 09  1    @1 NOVELLI (P. C.)
A14 01      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Institute for Geophysics, Astrophysics, and Meteorology, University of Graz @2 Graz @3 AUT @Z 1 aut.
A14 03      @1 Advanced Study Program, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 2 aut.
A14 04      @1 Service d'Aéronomie, Université Paris 6 @2 Paris @3 FRA @Z 2 aut. @Z 8 aut.
A14 05      @1 Laboratoire d'Aerologie, Observatoire Midi Pyrénées @2 Toulouse @3 FRA @Z 7 aut.
A14 06      @1 CIRES/NOAA Aeronomy Laboratory @2 Boulder, Colorado @3 USA @Z 8 aut.
A14 07      @1 Max-Planck-lnstitut für Meteorologie @2 Hamburg @3 DEU @Z 8 aut.
A14 08      @1 NOAA Climate Monitoring and Diagnostics Laboratory @2 Boulder, Colorado @3 USA @Z 9 aut.
A20       @2 D19304.1-D19304.14
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000122551970460
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 37 ref.
A47 01  1    @0 04-0595264
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 CO is a well-suited indicator for the transport of pollutants in the troposphere on a regional and global scale. For the study presented here, simulations of CO concentrations from a global chemistry transport model (MOZART-2), with the CO being tagged according to the emission type and the source region, have been used to diagnose the contributions of different processes and regions to the CO burden over Europe. Model simulations have been performed with both a priori emissions and an optimized set of CO surface emissions derived from the inversion of CO retrievals of the Measurements of Pollution in the Troposphere (MOPITT) remote sensing instrument. The annual mean difference between the modeled and the observed CO at 850 hPa over Europe is -38 ± 13 ppb with the a priori set of emissions and -7 ± 7 ppb when the optimized emissions are employed in the model. The general difficulties arising from an intercomparison of remote sensing data with model simulations are discussed. Besides data from MOPITT, ground-based CO measurements have been employed in the evaluation of the model and its emissions. The comparisons show that the model represents the background conditions as well as large-scale transport relatively well. The budget analysis reveals the predominant impact of the European emissions on CO concentrations near the surface, and a strong impact of sources from Asia and North America on the CO burden in the free troposphere over Europe. On average, the largest contribution (67%) to the anthropogenic (fossil and biofuel sources, biomass burning) CO at the surface originates from regional anthropogenic sources, but further significant impact is evident from North America (14%) and Asia (15%). With increasing altitude, anthropogenic CO from Asia and North America gains in importance, reaching maximum contributions of 32% for North American CO at 500 hPa and 50% for Asian CO at 200 hPa. The impact of European emissions weakens with increasing altitude (8% at 500 hPa).
C02 01  2    @0 220
C02 02  3    @0 001E
C03 01  2  FRE  @0 Simulation @5 06
C03 01  2  ENG  @0 simulation @5 06
C03 01  2  SPA  @0 Simulación @5 06
C03 02  2  FRE  @0 Europe @5 07
C03 02  2  ENG  @0 Europe @5 07
C03 02  2  SPA  @0 Europa @5 07
C03 03  2  FRE  @0 Indicateur @5 08
C03 03  2  ENG  @0 indicators @5 08
C03 04  2  FRE  @0 Transport @5 09
C03 04  2  ENG  @0 transport @5 09
C03 04  2  SPA  @0 Transporte @5 09
C03 05  2  FRE  @0 Polluant @5 10
C03 05  2  ENG  @0 pollutants @5 10
C03 05  2  SPA  @0 Contaminante @5 10
C03 06  2  FRE  @0 Troposphère @5 11
C03 06  2  ENG  @0 troposphere @5 11
C03 07  2  FRE  @0 Monde @5 12
C03 07  2  ENG  @0 global @5 12
C03 07  2  SPA  @0 Mundo @5 12
C03 08  2  FRE  @0 Concentration @5 13
C03 08  2  ENG  @0 concentration @5 13
C03 08  2  SPA  @0 Concentración @5 13
C03 09  2  FRE  @0 Modèle @5 14
C03 09  2  ENG  @0 models @5 14
C03 09  2  SPA  @0 Modelo @5 14
C03 10  2  FRE  @0 Problème inverse @5 15
C03 10  2  ENG  @0 inverse problem @5 15
C03 10  2  SPA  @0 Problema inverso @5 15
C03 11  2  FRE  @0 Pollution @5 16
C03 11  2  ENG  @0 pollution @5 16
C03 11  2  SPA  @0 Polución @5 16
C03 12  2  FRE  @0 Télédétection @5 17
C03 12  2  ENG  @0 remote sensing @5 17
C03 12  2  SPA  @0 Detección a distancia @5 17
C03 13  2  FRE  @0 Instrumentation @5 18
C03 13  2  ENG  @0 instruments @5 18
C03 13  2  SPA  @0 Instrumentación @5 18
C03 14  2  FRE  @0 Asie @5 19
C03 14  2  ENG  @0 Asia @5 19
C03 14  2  SPA  @0 Asia @5 19
C03 15  2  FRE  @0 Amérique du Nord @5 20
C03 15  2  ENG  @0 North America @5 20
C03 15  2  SPA  @0 America del norte @5 20
C03 16  X  FRE  @0 Feu végétation @5 21
C03 16  X  ENG  @0 Vegetation fire @5 21
C03 16  X  SPA  @0 Fuego vegetación @5 21
C03 17  X  FRE  @0 Facteur anthropique @5 22
C03 17  X  ENG  @0 Anthropogenic factor @5 22
C03 17  X  SPA  @0 Factor antrópico @5 22
C03 18  2  FRE  @0 Altitude @5 23
C03 18  2  ENG  @0 altitude @5 23
C03 18  2  SPA  @0 Altitud @5 23
N21       @1 341
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0595264 INIST
ET : Evaluation of CO simulations and the analysis of the CO budget for Europe
AU : PFISTER (G.); PETRON (G.); EMMONS (L. K.); GILLE (J. C.); EDWARDS (D. P.); LAMARQUE (J.-F.); ATTIE (J.-L.); GRANIER (C.); NOVELLI (P. C.)
AF : Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); Institute for Geophysics, Astrophysics, and Meteorology, University of Graz/Graz/Autriche (1 aut.); Advanced Study Program, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (2 aut.); Service d'Aéronomie, Université Paris 6/Paris/France (2 aut., 8 aut.); Laboratoire d'Aerologie, Observatoire Midi Pyrénées/Toulouse/France (7 aut.); CIRES/NOAA Aeronomy Laboratory/Boulder, Colorado/Etats-Unis (8 aut.); Max-Planck-lnstitut für Meteorologie/Hamburg/Allemagne (8 aut.); NOAA Climate Monitoring and Diagnostics Laboratory/Boulder, Colorado/Etats-Unis (9 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2004; Vol. 109; No. D19; D19304.1-D19304.14; Bibl. 37 ref.
LA : Anglais
EA : CO is a well-suited indicator for the transport of pollutants in the troposphere on a regional and global scale. For the study presented here, simulations of CO concentrations from a global chemistry transport model (MOZART-2), with the CO being tagged according to the emission type and the source region, have been used to diagnose the contributions of different processes and regions to the CO burden over Europe. Model simulations have been performed with both a priori emissions and an optimized set of CO surface emissions derived from the inversion of CO retrievals of the Measurements of Pollution in the Troposphere (MOPITT) remote sensing instrument. The annual mean difference between the modeled and the observed CO at 850 hPa over Europe is -38 ± 13 ppb with the a priori set of emissions and -7 ± 7 ppb when the optimized emissions are employed in the model. The general difficulties arising from an intercomparison of remote sensing data with model simulations are discussed. Besides data from MOPITT, ground-based CO measurements have been employed in the evaluation of the model and its emissions. The comparisons show that the model represents the background conditions as well as large-scale transport relatively well. The budget analysis reveals the predominant impact of the European emissions on CO concentrations near the surface, and a strong impact of sources from Asia and North America on the CO burden in the free troposphere over Europe. On average, the largest contribution (67%) to the anthropogenic (fossil and biofuel sources, biomass burning) CO at the surface originates from regional anthropogenic sources, but further significant impact is evident from North America (14%) and Asia (15%). With increasing altitude, anthropogenic CO from Asia and North America gains in importance, reaching maximum contributions of 32% for North American CO at 500 hPa and 50% for Asian CO at 200 hPa. The impact of European emissions weakens with increasing altitude (8% at 500 hPa).
CC : 220; 001E
FD : Simulation; Europe; Indicateur; Transport; Polluant; Troposphère; Monde; Concentration; Modèle; Problème inverse; Pollution; Télédétection; Instrumentation; Asie; Amérique du Nord; Feu végétation; Facteur anthropique; Altitude
ED : simulation; Europe; indicators; transport; pollutants; troposphere; global; concentration; models; inverse problem; pollution; remote sensing; instruments; Asia; North America; Vegetation fire; Anthropogenic factor; altitude
SD : Simulación; Europa; Transporte; Contaminante; Mundo; Concentración; Modelo; Problema inverso; Polución; Detección a distancia; Instrumentación; Asia; America del norte; Fuego vegetación; Factor antrópico; Altitud
LO : INIST-3144.354000122551970460
ID : 04-0595264

Links to Exploration step

Pascal:04-0595264

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evaluation of CO simulations and the analysis of the CO budget for Europe</title>
<author>
<name sortKey="Pfister, G" sort="Pfister, G" uniqKey="Pfister G" first="G." last="Pfister">G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute for Geophysics, Astrophysics, and Meteorology, University of Graz</s1>
<s2>Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petron, G" sort="Petron, G" uniqKey="Petron G" first="G." last="Petron">G. Petron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Advanced Study Program, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Service d'Aéronomie, Université Paris 6</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gille, J C" sort="Gille, J C" uniqKey="Gille J" first="J. C." last="Gille">J. C. Gille</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Edwards, D P" sort="Edwards, D P" uniqKey="Edwards D" first="D. P." last="Edwards">D. P. Edwards</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Attie, J L" sort="Attie, J L" uniqKey="Attie J" first="J.-L." last="Attie">J.-L. Attie</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Laboratoire d'Aerologie, Observatoire Midi Pyrénées</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, C" sort="Granier, C" uniqKey="Granier C" first="C." last="Granier">C. Granier</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Service d'Aéronomie, Université Paris 6</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>CIRES/NOAA Aeronomy Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>Max-Planck-lnstitut für Meteorologie</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Novelli, P C" sort="Novelli, P C" uniqKey="Novelli P" first="P. C." last="Novelli">P. C. Novelli</name>
<affiliation>
<inist:fA14 i1="08">
<s1>NOAA Climate Monitoring and Diagnostics Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0595264</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0595264 INIST</idno>
<idno type="RBID">Pascal:04-0595264</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000184</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evaluation of CO simulations and the analysis of the CO budget for Europe</title>
<author>
<name sortKey="Pfister, G" sort="Pfister, G" uniqKey="Pfister G" first="G." last="Pfister">G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute for Geophysics, Astrophysics, and Meteorology, University of Graz</s1>
<s2>Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petron, G" sort="Petron, G" uniqKey="Petron G" first="G." last="Petron">G. Petron</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Advanced Study Program, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Service d'Aéronomie, Université Paris 6</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gille, J C" sort="Gille, J C" uniqKey="Gille J" first="J. C." last="Gille">J. C. Gille</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Edwards, D P" sort="Edwards, D P" uniqKey="Edwards D" first="D. P." last="Edwards">D. P. Edwards</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Attie, J L" sort="Attie, J L" uniqKey="Attie J" first="J.-L." last="Attie">J.-L. Attie</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Laboratoire d'Aerologie, Observatoire Midi Pyrénées</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, C" sort="Granier, C" uniqKey="Granier C" first="C." last="Granier">C. Granier</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Service d'Aéronomie, Université Paris 6</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>CIRES/NOAA Aeronomy Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>Max-Planck-lnstitut für Meteorologie</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Novelli, P C" sort="Novelli, P C" uniqKey="Novelli P" first="P. C." last="Novelli">P. C. Novelli</name>
<affiliation>
<inist:fA14 i1="08">
<s1>NOAA Climate Monitoring and Diagnostics Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthropogenic factor</term>
<term>Asia</term>
<term>Europe</term>
<term>North America</term>
<term>Vegetation fire</term>
<term>altitude</term>
<term>concentration</term>
<term>global</term>
<term>indicators</term>
<term>instruments</term>
<term>inverse problem</term>
<term>models</term>
<term>pollutants</term>
<term>pollution</term>
<term>remote sensing</term>
<term>simulation</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation</term>
<term>Europe</term>
<term>Indicateur</term>
<term>Transport</term>
<term>Polluant</term>
<term>Troposphère</term>
<term>Monde</term>
<term>Concentration</term>
<term>Modèle</term>
<term>Problème inverse</term>
<term>Pollution</term>
<term>Télédétection</term>
<term>Instrumentation</term>
<term>Asie</term>
<term>Amérique du Nord</term>
<term>Feu végétation</term>
<term>Facteur anthropique</term>
<term>Altitude</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CO is a well-suited indicator for the transport of pollutants in the troposphere on a regional and global scale. For the study presented here, simulations of CO concentrations from a global chemistry transport model (MOZART-2), with the CO being tagged according to the emission type and the source region, have been used to diagnose the contributions of different processes and regions to the CO burden over Europe. Model simulations have been performed with both a priori emissions and an optimized set of CO surface emissions derived from the inversion of CO retrievals of the Measurements of Pollution in the Troposphere (MOPITT) remote sensing instrument. The annual mean difference between the modeled and the observed CO at 850 hPa over Europe is -38 ± 13 ppb with the a priori set of emissions and -7 ± 7 ppb when the optimized emissions are employed in the model. The general difficulties arising from an intercomparison of remote sensing data with model simulations are discussed. Besides data from MOPITT, ground-based CO measurements have been employed in the evaluation of the model and its emissions. The comparisons show that the model represents the background conditions as well as large-scale transport relatively well. The budget analysis reveals the predominant impact of the European emissions on CO concentrations near the surface, and a strong impact of sources from Asia and North America on the CO burden in the free troposphere over Europe. On average, the largest contribution (67%) to the anthropogenic (fossil and biofuel sources, biomass burning) CO at the surface originates from regional anthropogenic sources, but further significant impact is evident from North America (14%) and Asia (15%). With increasing altitude, anthropogenic CO from Asia and North America gains in importance, reaching maximum contributions of 32% for North American CO at 500 hPa and 50% for Asian CO at 200 hPa. The impact of European emissions weakens with increasing altitude (8% at 500 hPa).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>109</s2>
</fA05>
<fA06>
<s2>D19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evaluation of CO simulations and the analysis of the CO budget for Europe</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PFISTER (G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PETRON (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GILLE (J. C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>EDWARDS (D. P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LAMARQUE (J.-F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ATTIE (J.-L.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GRANIER (C.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>NOVELLI (P. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Geophysics, Astrophysics, and Meteorology, University of Graz</s1>
<s2>Graz</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Advanced Study Program, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Service d'Aéronomie, Université Paris 6</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Laboratoire d'Aerologie, Observatoire Midi Pyrénées</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>CIRES/NOAA Aeronomy Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Max-Planck-lnstitut für Meteorologie</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>NOAA Climate Monitoring and Diagnostics Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s2>D19304.1-D19304.14</s2>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000122551970460</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0595264</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>CO is a well-suited indicator for the transport of pollutants in the troposphere on a regional and global scale. For the study presented here, simulations of CO concentrations from a global chemistry transport model (MOZART-2), with the CO being tagged according to the emission type and the source region, have been used to diagnose the contributions of different processes and regions to the CO burden over Europe. Model simulations have been performed with both a priori emissions and an optimized set of CO surface emissions derived from the inversion of CO retrievals of the Measurements of Pollution in the Troposphere (MOPITT) remote sensing instrument. The annual mean difference between the modeled and the observed CO at 850 hPa over Europe is -38 ± 13 ppb with the a priori set of emissions and -7 ± 7 ppb when the optimized emissions are employed in the model. The general difficulties arising from an intercomparison of remote sensing data with model simulations are discussed. Besides data from MOPITT, ground-based CO measurements have been employed in the evaluation of the model and its emissions. The comparisons show that the model represents the background conditions as well as large-scale transport relatively well. The budget analysis reveals the predominant impact of the European emissions on CO concentrations near the surface, and a strong impact of sources from Asia and North America on the CO burden in the free troposphere over Europe. On average, the largest contribution (67%) to the anthropogenic (fossil and biofuel sources, biomass burning) CO at the surface originates from regional anthropogenic sources, but further significant impact is evident from North America (14%) and Asia (15%). With increasing altitude, anthropogenic CO from Asia and North America gains in importance, reaching maximum contributions of 32% for North American CO at 500 hPa and 50% for Asian CO at 200 hPa. The impact of European emissions weakens with increasing altitude (8% at 500 hPa).</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Europe</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>Europe</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Europa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Indicateur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>indicators</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Transport</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>transport</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Polluant</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>pollutants</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Contaminante</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Monde</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>global</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>models</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>pollution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Polución</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Télédétection</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>remote sensing</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Detección a distancia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Instrumentation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>instruments</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Instrumentación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Asie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>Asia</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Asia</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>North America</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>America del norte</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Feu végétation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Vegetation fire</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Fuego vegetación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Facteur anthropique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Anthropogenic factor</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Factor antrópico</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Altitude</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>altitude</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Altitud</s0>
<s5>23</s5>
</fC03>
<fN21>
<s1>341</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0595264 INIST</NO>
<ET>Evaluation of CO simulations and the analysis of the CO budget for Europe</ET>
<AU>PFISTER (G.); PETRON (G.); EMMONS (L. K.); GILLE (J. C.); EDWARDS (D. P.); LAMARQUE (J.-F.); ATTIE (J.-L.); GRANIER (C.); NOVELLI (P. C.)</AU>
<AF>Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); Institute for Geophysics, Astrophysics, and Meteorology, University of Graz/Graz/Autriche (1 aut.); Advanced Study Program, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (2 aut.); Service d'Aéronomie, Université Paris 6/Paris/France (2 aut., 8 aut.); Laboratoire d'Aerologie, Observatoire Midi Pyrénées/Toulouse/France (7 aut.); CIRES/NOAA Aeronomy Laboratory/Boulder, Colorado/Etats-Unis (8 aut.); Max-Planck-lnstitut für Meteorologie/Hamburg/Allemagne (8 aut.); NOAA Climate Monitoring and Diagnostics Laboratory/Boulder, Colorado/Etats-Unis (9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2004; Vol. 109; No. D19; D19304.1-D19304.14; Bibl. 37 ref.</SO>
<LA>Anglais</LA>
<EA>CO is a well-suited indicator for the transport of pollutants in the troposphere on a regional and global scale. For the study presented here, simulations of CO concentrations from a global chemistry transport model (MOZART-2), with the CO being tagged according to the emission type and the source region, have been used to diagnose the contributions of different processes and regions to the CO burden over Europe. Model simulations have been performed with both a priori emissions and an optimized set of CO surface emissions derived from the inversion of CO retrievals of the Measurements of Pollution in the Troposphere (MOPITT) remote sensing instrument. The annual mean difference between the modeled and the observed CO at 850 hPa over Europe is -38 ± 13 ppb with the a priori set of emissions and -7 ± 7 ppb when the optimized emissions are employed in the model. The general difficulties arising from an intercomparison of remote sensing data with model simulations are discussed. Besides data from MOPITT, ground-based CO measurements have been employed in the evaluation of the model and its emissions. The comparisons show that the model represents the background conditions as well as large-scale transport relatively well. The budget analysis reveals the predominant impact of the European emissions on CO concentrations near the surface, and a strong impact of sources from Asia and North America on the CO burden in the free troposphere over Europe. On average, the largest contribution (67%) to the anthropogenic (fossil and biofuel sources, biomass burning) CO at the surface originates from regional anthropogenic sources, but further significant impact is evident from North America (14%) and Asia (15%). With increasing altitude, anthropogenic CO from Asia and North America gains in importance, reaching maximum contributions of 32% for North American CO at 500 hPa and 50% for Asian CO at 200 hPa. The impact of European emissions weakens with increasing altitude (8% at 500 hPa).</EA>
<CC>220; 001E</CC>
<FD>Simulation; Europe; Indicateur; Transport; Polluant; Troposphère; Monde; Concentration; Modèle; Problème inverse; Pollution; Télédétection; Instrumentation; Asie; Amérique du Nord; Feu végétation; Facteur anthropique; Altitude</FD>
<ED>simulation; Europe; indicators; transport; pollutants; troposphere; global; concentration; models; inverse problem; pollution; remote sensing; instruments; Asia; North America; Vegetation fire; Anthropogenic factor; altitude</ED>
<SD>Simulación; Europa; Transporte; Contaminante; Mundo; Concentración; Modelo; Problema inverso; Polución; Detección a distancia; Instrumentación; Asia; America del norte; Fuego vegetación; Factor antrópico; Altitud</SD>
<LO>INIST-3144.354000122551970460</LO>
<ID>04-0595264</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0595264
   |texte=   Evaluation of CO simulations and the analysis of the CO budget for Europe
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023